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Abstract. We present variational calculations for quantum spin-half models based upon 
modifications to nearest-neighbour dimer states. Using a sequence of projections we can attempt 
3 sort of finite-size scaling. in the number of variational parameters. towards the exact solution. 
For the simple nearest-neighbour Heisenberg model we achieve M error of only 0.005% in energy 
for our most accurate caIculation, much better than an equivalent Lmczos calculation. with which 
we compare. Due to the fact that we control the tom! spin in our wavefunctions. we can evaluate 
the cohwnce lengths associated with cyclic-exchange permutations (the spin-half sector) md 
for spin-spin correlations (the spin-one sector), yielding. for example, a zonvincing numerical 
confirmation that the spin-one biquadratic-exchange Hamiltonian has B finite correlation length. 
We perform a study of the one-dimensional J 1 - h  model, trying to predict the onset of the phase 
transition by searching directly for the divergence of the correlation length. O w  calculations 
predict the phase transition near J ~ J J I  - 114. as expected. We also perform a audy of the 
ladder geometly, giving further evidence that infinitesimal coupling between ladders yields an 
immediate gap in the spectrum. The only complication is that the minimization over our space 
of vxiational parameters LS subtle: surprisingly complicated and ’difficult to find’ smcture is 
observed in our low-energy solutions which might make our appmch of limited use. 

1. Introduction 

The role of quantum mechanics in spin physics has captivated a generation of magnetism 
theorists. In ‘high’-dimensional systems the classical solution reigns supreme, but in ‘low’. 
dimensional systems any order is shaken apart by the low-energy collective excitations 
and a new, truly quantum mechanical state replaces the classically ordered state. It is to 
this quantum solution that the theorists have addressed themselves, trying to describe the 
phenomena to be expected in such a state. 

The models which are used to describe !ow-dimensional magnetism can be chosen to 
be as simple as possible with hardly any reduction in difficulty. The elementary Heisenberg 
model is probably the best studied, and although the nearest-neighbour variant has been 
solved by Bethe amatz [ l ] ,  the solutions have to be interpreted in terms of spin-half and 
spin-one excitations [2], and the relative role of these excitations remains fairly obscure. 
When one adds next-nearest-neighbour coupling, leading to the Jt-Jz model, in order to 
study the phase transition between the gapless 52 = 0 and gapped 252 = J I  phases [3]. there 
is no exact solution  to^ help and one is left to consider possible approximation schemes. We 
will develop such an approximation scheme in this article, extending the simplistic treatment 
previously suggested [4] to a rather higher level. 

There are several methods of tackling quantum spin systems, all With their associated 
drawbacks. Firstly, one can go to the continuum limit and study the associated field theory 
[5 ] .  The drawback with this approach is that the taking of this limit is not controlled 
and so the writing down of the model constitutes a guess. The strength of the technique 
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is that understanding the physics of the solution is ‘easier’. Secondly, there is the trick 
of mapping the original hard-core boson problem onto an equivalent fermion problem, 
the so-called Jordan-Wigner transformation 161. The hard-core constraint is dealt with by 
Pauli exclusion and then the weaker coherence effects can bc approximated by mean-field 
theories. One weakness in this approach is that the mean-field approximation applied to 
the residual interactions is poor and ‘ordered‘ solutions are greatly preferred over strongly 
correlated solutions. A second weakness is that any refinement requires a significant advance 
in treating the correlated fermionic problem, a very difficult task. Thirdly, one has exact 
diagonalization and quantum Monte Carlo techniques, which involve no inherent error but 
which require that the phenomenon investigated be observable in the rather small systems 
analysed. Finally, one has variational approaches which involve guessing sensible and 
accurate solutions to the problem at hand. Obviously, the great weakness of variational 
calculations is that they are uncontrolled and therefore cannot be assessed easily. 

In this article we will develop a sequence of variational calculations which we believe 
converge to the exact answer. Tbis allows us to perform a sort of ‘finite-size-scaling’ 
analysis in order to try to deduce the behaviour, in a very similar way to that employed 
in exact diagonalization. A second feature of our analysis is the ability to calculate and 
interpret the long-range properties of the correlation functions, allowing us to predict where 
and how the phase transition in the J 1 - h  Heisenberg model occurs. 

The key to our calculations is a non-orthogonal representation to the total-spin singlet 
subspace of the spin-half chain [7]. Although the basis is difficult to use, it has the advantage 
that nll the conservation laws have been extracted and so states with perfect quantum 
numbers can be created. In simple terms, we start out with a pairwise dimerized state, and 
then by successive hierarchies of transpositions, we include more and more distant spin 
correlations. One might imagine that at each order the length of singlets is increased by 
one, but this is not directly true, since the non-orthogonality confuses the issue and makes 
the length of singlets a non-trivial concept. If we use the spin-spin correlations to define 
what we mean by length of singlets, then we construct states with correlation lengths of 
forty atoms, although the number of imposed transpositions is only six. 

As a test of our scheme, we have elected to look at the spin-one biquadratic-exchange 
Hamiltonian, which can be solved exactly [SI. The point here is that the analytic correlation 
length is 21 atoms and so is unlikely to show up in an exact diagonalization analysis. We 
have little problem in obtaining evidence for the existence of a finite correlation length. 

Our real interest, however, is in the phase transition found in the JI-J2 model. We 
apply our scheme to this model with the intention of both pinning down when the transition 
occurs and secondly trying to establish that the transition is controlled by the topological 
excitations in the system. 

A second system of great current interest is the ladder geometry 191. The issue in 
this system is when the phase transition between the gapless phase with uncoupled rails 
to the gapped phase with coupled rails occurs. Numerical evidence seems to suggest that 
infinitesimal coupling yields a gap [9], and our technique provides corroborative evidence. 

In section 2 we introduce the calculational scheme, in section 3 we apply the technique 
to the total-spin-zero projector Hamiltonians, which include the biquadratic-exchange 
Hamiltonian as a special case, in section 4 we look at the J I -J z  Hamiltonian for spin- 
half, in section 5 we look at the ladder geometry, and in section 6 we conclude. 
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2. Hierarchical variational states and their correlation functions 

The approach that we are developing revolves around the existence of a complete 
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representation to the total-spin-singlet subspace for spin-half atoms [7], which enables us 
to perform variational calculations with correct quantum numbers. We have provided a 
description of this representation in a previous article 141, but we will repeat the description 
here because it is an essential ingredient of an understanding of our calculations. 

The hasis we elect to use involves choosing two equal-sized sublattices of spins, 
combined with an order which alternates between sublattices. For the linear chain this 
choice is very natural and we shall use the obvious order along the chain in this article. 
The states in our basis then involve pairing up all the spins, with one from each pair on 
each sublattice, and then laying down valence bonds, i.e. projecting the spin configuration 
of each pair onto a total-spin singlet, on each pair. If all possible pairings were considered 
then we would have an overcomplete description, and so we make a final restriction to 
non-interleaved pairings. This final restriction makes use of the order and requires that for 
any two pairs, one pair lies between the spins which compose the other. Subject to this 
non-interleaving restriction the basis then becomes complete, although non-orthogonal [7]. 

The next major task is to achieve a formal description of our chosen basis with which we 
can work. The method we employ is to construct a hierarchy of states from a chosen nearest- 
neighbour dimer state, by sequentially applying nearest-neighbour spin-singlet projection 
operators. We choose one of the two nearest-neighbour dimer states and then label the 
'gaps' between the singlets with a label, n say. The projection operators that project the 
two spins either side of the gap onto a total-spin singlet we represent as pn, and the projection 
operators that act on the singlet between the nth and ( n  + 1)th gap we represent as pnt;. 
AI1 the states can then be represented by a sequence of alternating integral half-integral 
projectors: 

where ID) is the initial dimer state and 1, are sets of integers. In order to obtain distinct 
states in our basis. there is a implicit relationship between the sets: the integer i may only 
be included in I, if both i and i + 1 are included in Ir-l. This restriction ensures that each 
state is unique. The order n is the hierarchy to which the state belongs. We can interpret 
the states defined in this way quite simply: consider the process of using the singlets to pass 
down the chain, i.e. start at the leftmost spin, jump to the other spin in its singlet and then 
pass to the next spin in order, jump to its partner and so on. All spins not encountered in 
this procedure have been altered by the first hierarchy. We can then consider the leftmost 
spin as yet uncounted, and use our 'jumping' process to find the spins affected by the second 
hierarchy but no higher hierarchy. Obviously this argument carries on to all orders. 

We employ this basis both as an interpretational aid and as an exact way to perform 
calculationsA on finite systems. Although the basis is non-orthogonal, the projection 
operators, Pa, are particularly simple in this basis, because they project each state onto 
only one other state with one out of two matrix elements. Any Hamiltonian which can 
be decomposed simply into nearest-neighbour projectors is applicable for our method. 
Obviously all isotropic interactions can  be represented in this way, but the representation 
may not be tractable, as we shall later see. 

The variational wavefunctions that we employ are chosen to be translationally invariant, 
and this restricts our choice. In practice we use 
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where X ,  are variational parameters. Obviously, we are using states of a particular order, 
although we are not restricting the operation of higher hierarchies to when they make new 
states. Our current choice is dictated by our ability to control the results rather than the 
physical intuition of picking useful wavefunctions. 

The method of controlling our wavefunctions is straightforward-we reorder commuting 
transpositions in such a way as to apply the operators from one end of the system sequentially 
towards the other: each subsequent application is a translated version of the last and 
so we replace all expectation values by products of trmsfer matrices. Our first task is 
normalization, and this we ensure by rewriting: 

M W Long and C A  Hayward 

-~ * -  
(mlm) = (01 . . . 0,-20,-16,~,+lo,+2...10) (2.3) 

where 

and the initial and final projectors project states onto the chosen dimer, alleviating the 
necessity for starting out and finishing with the dimer state. 

The operator 6n projects all pairs of spins before the nth gap onto singlets, permutes 
the m + 2 singlets around the nth and (n + m)th gap, inclusive of the two which make up 
the gap, and then projects all subsequent pairs of spins onto singlets. Before application of 
0, we start out with a state for which the m + 1 singlets excluding the one before the nth 
gap are permuted, and after application we end up with the m + 1 singlets excluding the 
one after the n + mth gap permuted. In order to apply 6, we need to be able to represent 
all total-spin singlet states involving both m + 1 and m + 2 singlets. We start out with a 
particular linear superposition over the states obtainable from the m + 1 singlets excluding 
the singlet before the nth gap. We apply the operators on the space of states representing 
the m + 2  singlets and then the final projection eliminates the singlet after the (n+m)th gap, 
leading to a state which is a linear superposition over the states obtainable from the m + 1 
singlets excluding the singlet after the (n +m)th gap. Obviously, the new superposition is a 
linear combination of the previous superposition, and so we can represent the operation of 
6n in terms of a transfer matrix acting on the space of total-spin singlets involving m + I 
singlet pairs. 

In terms of our non-interleaved basis, this procedure is extremely simple, since each 
state projects down onto only one other state and so we need only describe a vector instead 
of a matrix in order to represent the total-spin-singlet projection operators, P. Once we 
have found our transfer matrix, all we need do is diagonalize it in order to obtain the 
relevant states. An eigenvector yields a state which is preserved by an application of bn, 
and if we start out with a linear superposition over states with different eigenvalues, then 
the eigenstate with the largest eigenvalue will become exponentially dominant after many 
applications of the transfer matrix. To normalize our variational state, all we need to d o  is 
divide by the relevant power of the chosen eigenvalue. 
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After having normalized our states, we then need to evaluate energies for relevant 
Hamiltonians. This is straightforward, but can be numerically expensive for longer-range 
interactions. The basic idea can be encapsulated by 

^ ^  

(mlki,lm) = (DI . . . 6 ,~ -~~ , , -  1 ~ ~ 0 ~ + 1 + ~ 6 ~ + ~ + ~ . . . 1 ~ )  (2.5) 

where H; is an operator composed of the operator fin and the operators contained in 
0, On+! . . . On+, all correctly ordered. Obviously r is the minimum number of the 
0, which are affected by the operator fin. In order to evaluate this type of quantity, we 

matrix. projecting all unaffected spin pairs before the represented region onto singlets. We 
then apply our operator fi; in the space of m +2+r  singlets. We then project out the r +  1 
spin pairs at the end of the affected region and overlap the resulting wavefunction with the 
dual-space eigenfunction, or equivalently project it onto the original eigenstate. 

In  practice, we only work with elementary permutations. For example, the operator 
@,,+,,,I2 involves interfering with only one b,, and so r = 0 and the calculation is trivial. The 
operator Pn+m+l/2, however, involves non-commutation with two 0 , s .  and hencer = 1 and 
we need to represent a slightly larger space. It is also quite easy to represent next-nearest- 
neighbour interactions, if we remember that the transposition operator is,, fn = 1 -2@,,, and 
that f,f,+; fn transposes two next-nearest-neighbour spins. Indeed, using these ideas it is 
clear that any permutation can be rerepresented as a product over total-spin-zero projectors. 
although r becomes prohibitively large with longer-range permutations. 

It should now be clear that performing the variational calculations for the J I - J ~  model 

and finally minimizing the resulting energy over the variational parameters, ~z numerically 
straightforward (although not easy) sequence of tasks. 

As well as the tofa1 energy, it is also possible for us to calculate the long-range behaviour 
of some relevant correlation functions. The basic idea is simple: due to our construction, 
there is a maximum length of singlets which require to be considered. If we consider 
correlation functions over a length scale much longer than this intrinsic length, then we 
can immediately deduce the long-range behaviour in terms of eigenvalues of new transfer 
matrices. 

Let us consider the spin-spin correlations initially. We can use long-range permutations 
to create spin-spin correlations, using the identity, fBn.,z+, + 25, . S,+,, for the 
transposition of the spins on sites n and n + r .  Since there are no singlets of the relevant 
length, this transposition must create a pair of singlets stretching over the length r .  We 
can then split up the resulting state by projecting out the spins on the original pairs which 
made up the stretched singlets. There is a contribution from when they are in a singlet, 
compensating the factor 4 in the definition of the transposition, together with a contribution 

In order to obtain eventual 
correlations, the product over the 6, operators must transfer the resulting triplet along the 
chain to meet its partner. The ratio of the eigenvalues in the total-spin-triplet subspace 
to that in the total-spin-singlet subspace is therefore directly related to the decay of the 
spin-spin correlations for our chosen states. To apply this idea, all we need to do is to 
represent the total-spin-triplet subspace and then find and diagonalize the transfer matrix in  
this subspace. 

Our second family of correlation functions is the so-called ring exchange of cyclic- 
permutation correlations [SI. We believe that using these correlation functions is the natural 
way to study the topological excitations in the system. Once again, we go to a range much 

* A  - ~ 

~ 

need to be able to represent m+2+r singlets: we start out with the eigenstate of our transfer ~ 

- ~ 

is just a matter of performing strings of projections, diagonalizing the transfer matrix ~ 

= 

~ 

where the pair are parallel, i.e. in a triplet configuration. ~ 
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longer than the intrinsic length of singlets introduced by our variational parameters. The 
application of a long-range cyclic permutation will then drag one singlet across the range r.  
In order to obtain eventual correlations, this additional spin-half must be transferred down 
the spin chain to its partner. There is an additional subtlety in this problem, since the cycljc 
exchange does in fact translate one dimer state locally onto the other. The analogue to 0, 
is 

M W Long and CA Hayward 

m 

where we are transferring along an, assumed infinite, region of chain with one dimer state 
translated by one. The transfer matrix corresponding to i?" acts on a subspace which 
generates all total-spin-half wavefunctions and once again the long-range correlations are 
controlled by the ratio of the eigenvalues of this transfer matrix to the largest eigenvalue of 
the total-spin-singlet transfer matrix. 

In practice, working with our variational wavefunctions involves several different types 
of calculations. We need to represent all tiie possible spin configurations for a finite length 
of spin chain. For the ground state we require to represent the total-spin-singlet subspace, 
for cyclic-permutation correlations we require to represent the total-spin-half subspace, and 
for spin-spin correlations we need to represent the total-spin-triplet subspace. In terms 
of these representations we need to evaluate the transfer matrices for normalization, the 
passage of a spin-half and the passage of a spin triplet along the chain. In order to calculate 
these transfer matrices we need to multiply sequentially a set of total-spin-singlet projectors, 
and so we need to represent these operators in our chosen basis. Diagonalization of these 
matrices yields the stable spin configuration for the ground state and the decay rate of 
the correlation functions at long distances. We also need to evaluate the energy of some 
simple short-range interactions, so that we can minimize this energy over our variational 
parameters: this evaluation involves further strings of total-spin-zero projectors, represented 
on rather bigger systems than is required for the normalization. 

The fact that cyclic-exchange correlations correspond to the transfer of an extraneous 
spin-half, while spin-spin correlations correspond to the transfer of an extraneous spin-one, 
lies behind our physical intuition: we associate long-range cyclic-permutation correlations 
with low-energy topological excitations and long-range spin-spin correlations with low- 
energy spin waves. 

3. The biquadratic Hamiltonian a n d  its higher-spin generalizations 

Comparisons between spin-half and higher spins have been fashionable since the discovery 
of the 'Haldane gap'. It was soon realized, however, that the inherent simplicity of spin-half 
means that there are many possible higher-spin generalizations to the Heisenberg model. 
One such generalization is to the nearest-neighbour total-spin-zero projector Hamiltonian 
[SI: 

H = - J P:i+l 
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where F:, projects the spin configuration on the ith and j t h  atoms onto the bit which is a 
total-spin singlet. In terms of s2 (Si + Sj) . (Si + Sj), this operator can be written as 

For this interaction, only situations for which a nearest-neighbour pair are in a total-spin- 
singlet are favourable. Due to the rapid decay of the probability that nncorrelated spins are 
in a singlet as a function of total spin, 1/(1 +2S)’, and of the probability that anti-parallel 
spins are in a singlet, 1/(1 +2S),  it soon becomes advantageous to break the translational 
symmetry and to dimerize the spins. This leads to a quantum mechanical phase of great 
current interest. 

The cause of our interest in these models is that both the spin-half and spin-one variants 
of these models have been independently solved. The spin-half model is equivalently the 
Heisenberg model [ 11 and the spin-one model is equivalently the biquadratic-exchange 
Hamiltonian [SI. Although the spin-half model is gapless, the spin-one model is already 
gapped, but with a rather large correlation length of - 21 atomic spacings. This gapped 
state is an excellent test for our variational approach, being such a long-range phenomenon. 

the wavefunction is in turn positive definite (non-orthogonality must be considered in this 
argument). This fact restricts attention to positive values of x,, and we soon found that the 
lowest-energy state has monotonically decreasing xes. For this model the optimization over 
x. is elementary and we can easily ‘finite-size’ scale. 

In figure 1 we have scaled the spin-half and spin-one ground-state energies for both our 
variational calculations and some Lanczos calculations performed using our non-interleaved 
basis. The variational calculations are at least an order of magnitude more accurate, but 
the ‘finite-size’ scaling is clearly smoother for the Lanczos calculations. At face value the 
variational calculations look better, but this is rather deceptive: the way in which finite- 
size Lanczos results scale is strongly indicative of the nature of the system. A comparison 
between the spin-half and spin-one results clearly indicates a pure power law for the spin- 
half model but there is clear curvature towards exponential convergence for the spin-one 
model. These observations are a clear prediction for the different natures of the two systems. 

The energy of the system is an important if rather inane quantity to look at. The 
real interest is in the low-temperature properties of the model which can be deduced from 
knowledge of the low-energy excitations.or usually from knowledge of particular correlation 
functions of the ground state. In figure 2 we present the correlation lengths deduced from 
our variational ground states. Although there is some scatter, it is easiest to believe that the 
spin-half system has an infinite correlation length, whereas the spin-one system has a finite 
correlation length. Perhaps the best evidence comes from analysing the higher-spin variants 
.of the model, as depicted in the insets: a smooth downward shift of the curves is seen as the 
spin is reduced, until the intercept with the y-axis crosses the origin. This particular value 
of spin, S, say, would correspond to the phase transition where the gap closes. Although it 
is a rather unphysical parameter, one can use both exact diagonalization and our variational 
calculations on other than half-integral spins, and make a prediction for S,, and how the 
transition is physically effected. 

In figure 3 we plot inverse correlation lengths as a function of total spin, S. Lower 
curves correspond to more parameters, and we are supposed to deduce the function that 
these curves limit to. The most natural picture to us would be a straight line as a function 
of total spin, striking the x-axis at S,. Performing an extrapolation at a few values of 

In our chosen basis, the matrix elements of the Hamiltonian are negative definite, and so 
~ 

~ 

~ 

~ 

~ 
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Figure 1. finitc-size sealing calcula&ms far the total energy of the nearest-neighbour Heisenberg 
model and the spin-one biqundntic-exchange model. In order to assess accuracy, we have 
plotted log,,,l(s, - rm)/cml a a function of logmn. The top two graphs show Lanczos exact 
diagonaliwtian for up to 32 atom. + for Heisenberg and * for biquadntic. as a function of 
chain length, pi. The bottom two graphs show the current calculations. Y for Heisenberg and o 
for biquadratic. a5 a function of number of variational parameters. n .  The current calculations 
are a couple of orders of magnitude more accunte. bul simultaneously less smwth. 

total spin, and then performing a linear interpolation yields a prediction of S, - 0.8, a not 
unreasonable possibility. The two types of correlation length yield a consistent result, but 
the cyclic-permutation correlations yield a more believable prediction. 

As well as the total energy, there is also a prediction for the correlation length from 
the exact calculations on the biquadratic-exchange model [SI. Our results unambiguously 
suggest that the analytic result does not correspond to cyclic-permutation correlations, 
although it is not inconsistent with spin-spin correlations. This result is a surprise for 

Our results are clearly consistent with the exact results on these simple models and can 
us. 

be used to make predictions with some degree of confidence. 

4. The Jl-Jz model 

In this section we will deal with the spin-half Heisenberg model involving antiferromagnetic 
interactions of strength JI between nearest neighbours and Jz between next-nearest 
neighbours. For convenience we have employed the transposition operators to normalize 
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where f , , j  = $ + 2Si . Sj transposes the two spins at sites i and j .  With this choice of 
normalization the dimer solution has zero energy. 

Our approximation scheme is based around a chosen dimer state. Since when 2J2 = J, 
this state is an exact solution, we might expect our results to improve as J2 is increased. 
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Figure 2. (Continued) 

Our results are presented in figure 4. Since exact results are not known as J z / J I  is varied, 
we have made estimates for the eventual ground-state energies. Our method of estimating 
the energy was to use the smoothness of the exact diagonalization results, and to make these 
curves appear ‘natural’, usually linear. The relative positions of the curves do not depend 
greatly upon this particular choice of energy, cmr although their perceived smoothness does. 
Unlike the previous projector calculations, the results are very messy, involving a collection 
of low-energy states with quite different parametric descriptions. Although the results are 
quite accurate, the scaling is not very smooth, since the states are continuously changing 
their structure. We should also point out that our search for low-energy solutions has been 
by no means exhaustive, and there may well be solutions of our projected form that we 
have not encountered. 

The correlation functions are much more interesting: the cyclic-permutation correlations 
are of much longer range than the spin-spin correlations, as is to be expected if 
the corresponding topological excitations control the phase transition. The spin-spin 
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Figure 3. Finite-’size’ scaling calculations of the inverse correlation lengths for (a) spin-spin 
correlations and (b) cyclic-permutation carrelations, as a function of total spin, S, for a range of 
values including the phase Uansition. The sequence of calculations progressing down the figure 
involve sequentially including an additional variational pammeter. 



-1 

I 

7 . I .?  
0 

0 
-1.4 

-1.6 
1 
i 
e -1.8 

r 
; - 2  

- 2 . 1  

- I  

L 

4 -1,z:e 
1 
0 

1 -1 .4  

I 
: - 1 . 6  

: 
e -1.8 

1 

e 
I 

; - 2  

-2.1. 

E n e r q i e s  
e 

(4 - 
b 

* 
0 

x 0 - x x  

0 

x 0 - x x  
0 

x 
x e - 

e x x  
0 

e 
0 

~ 

e 

- 
x x  

0 0.2 0.4 0 . 1  0 . 8  1 1.1 

0 

(6) - 
e 

0 

e - x x  

0 

x 0 - x x  
a 

x 
x 0 . 

e x x  
0 

0 
- x e 

0 

x x  

0 0 . 2  0 . k  0.6 0.8 I 1.1 

Loglo Of lengthlrange ILoglo D )  



Generalized dimer states: hierarchies 11111 

Enerqies 
e 

(4 
a 

e 

e 

e 
x x x  

e 
e 

a 
X P :  e 

e 

x x  I 
E x  - 2 . 2  

0 0 . 2  ~ 0 . 4  0 . 6  0.8 1 1.2 

Log10 ai lengtblidnge ILog10 n) 

Figure 4. (Continued) 



11112 

correlations vary more dramatically, due to the divergence present in the dimer state which 
occurs when 2Jz = 51. It is clear that the phase transition will be easier to predict from the 
ring-exchange correlations. 

We plot the inverse correlation lengths for our lowest-energy calculations in figure 5. 
The discontinuities are caused by changes in the characteristics of the lowest-energy solution, 
and clearly constitute quite important effects. If we presume a non-linear dependence on 
inverse correlation length on the parameter J z / J 1 ,  then the correlation functions predict 
that the transition should occur somewhere around 4J2 = J I ,  as predicted by the classical 
theory. The scaling is not clear. and the result predicted could be as large as 52 = 0.4Jj. 

The assumption underlying the current investigation is that the topological excitations 
control the phase transition and these excitations can be probed using the cyclic-permutation 
correlations. One important consideration is that one might expect the cyclic-exchange 
correlations to be maximal when the phase transition occurs. There is no evidence for the 
correlation length achieving a maximum away from 52 = 0. However, it should be borne 
in mind that the calculations are much more accurate when JZ = 0, and so the correlation 
length may be of longer range for this reason. 

The absolute values of the correlation lengths are also worthy of note, sincc if these 
lengths were to be finite for J z / J 1  = 0.3, for example, then the associated cyclic-permutation 
correlation length would need to be much longer than 30 atoms-very difficult to pick up 
with any numerical technique. 

The final fact to point out in this section is that the current results are nor what we 
would have naively expected: although the dimer becomes the exact solution in the limit 
2J2 H J I ,  the corrections inherent to our projection scheme do not smoothly correct this 
state and we are left with a quite unnatural description of the ground state in the vicinity of 
this point. The theory makes predictions, but the ‘systematic’ improvements are not easy to 
scale. We believe that this defect is the most severe for our technique, and will ultimately 
restrict its applicability. 

M W Long and CA Hayward 

5. The ladder geometry 

In this section we consider the spin-half Heisenberg model on the so-called ‘ladder geometry’ 
of two lines of parallel atoms. Unlike the previous two geometries, the ladder geometry has 
two atoms per unit cell. If we denote atoms along one ‘rail’ of the ladder by Si and along 
the other rail by Ti ,  where i is a label for the ‘rungs’ of the ladder, then this Hamiltonian 
may be written as 

where Jll is the matrix element for bonds parallel to the rails and J L  is the matrix element 
for the bonds across the rungs. Since we start out with a dimer state, we are already in a 
‘two atom per unit cell’ situation. Instead of being a degeneracy, for the ladder geometry, 
the two possible choices of dimer are crucial to the current theoretical discussion: there 
are two types of ground state to the ladder geometry, and hence a phase transition between 
them, but where does this transition occur? For our technique, the two possible choices of 
dimer correspond to the two possible ground states. 

We have elected to order the atoms by nearest neighbours, in the ‘snake’ connectivity. 
This choice is required on account of the inherent reflection symmetries in our variational 
wavefunctions. There are two types of bond: 31 = Ja parallel to the ladder and Jz  = JI 
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for the rungs. One dimer state solves the limit J I  >> Jl,, since a singlet is laid down on 
each of the JL-bonds. In this limit there is a gap to triplet excitations. In the opposing 
limit J,, >> 51, the ground state involves two uncorrelated Heisenberg ground states along 
the two rails of the ladder. This state is gapless, involving topological excitations on either 
rail. The second dimer state involves laying down singlets on halfof the Jll bonds, and so 
makes a suitable starting point for the gapless phase. 

Similarly to in the case of the projector Hamiltonian, but unlike in that of the JI-Jz 
model, the low-energy parametrization for our technique is straightforward. The basic trick 
is to alternate variable x,s with the specific choice of x, = -2. Since, 1 - 2pn = Pn is a 
transposition operator, the choice x, = -2 corresponds to an infinite product of elementary 
transpositions. The transpositions are used to ‘swap’ the spin correlations between the two 
rails of the ladder, and the intermediate projectors introduce correlations along the rails. 
alternating between the two halves of the 51-bonds. In the two limits, xn = -2 is exact, 
but for the general case the basic pattern is ‘similar’ and easy to find because of this. Any 
solution to the nearest-neighbour Heisenberg model can be constructed concurrently on both 
rails of the ladder, by alternating the x.s of the chain solution with x, = -2, for example. 

We have performed calculations on the ladder geometry analogous to those that we 
did for the previous geometries. In figure 6 we plot the energies, once again showing that 
our variational wavefunctions are competitive and appear to converge systematically to the 
exact solution. The sequence of calculations is quite instructive: there is a small region 
of stability for the phase based upon independent rails in the vicinity of JL H 0. As the 
number of parameters increases, so this region of stability shrinks. Obviously, by projecting 
one dimer state onto the other, we,can turn one type of state into the other. This guarantees 
that there is an alternation in our calculations as J I  H 0, and then our calculations suggest 
that the state based upon correlations between rails is stabilized for JI > 0. 

For the current geometry, cyclic permutations are not relevant, and show only short- 
range correlations across the entire range of parameters, as one would expect. 

The inverse correlation lengths are scaled in figure 7. It is easiest to believe that the 
gap opens up immediately that JI is made finite. This is in complete agreement with 
the deductions made from other calculations [9]. We also see that as one would expect, 
the state with correlations along the rails gains from correlating the two rails together, 
yielding classical magnetic energy. The physical point is that for this low-dimensional 
system, quantum mechanics dominates, and there is more energy in quantum mechanical 
fluctuations than in classical order. 

M W Long and C A  Hayward 

6. Conclusions 

Using our complete but non-orthogonal basis of total-spin singlets [7]. we have developed 
a systematic variational approximation scheme for one-dimensional Heisenberg models and 
their correlation lengths. We have applied our scheme to the total-spin-zero projector 
Hamiltonian as a function of total spin, S, to the 51-52 Heisenberg model as a function of 
J l / J , .  and also to the ladder geometry as a function of JL/JI,. We find evidence for the 
phase transitions between gapped and gapless states in these models, yielding a prediction 
of S, - 0.8, a rather poorer ‘guestimate’ of J; - J;/4, and evidence that J; H 0. 

We have analysed the long-range properties of cyclic permutation correlations and spin- 
spin correlations and we find that cyclic-permutations control the phase transitions in the 
projector Hamiltonians and the Jl-Jz model, but that spin-spin correlations control the 
ladder geometry. This is exactly as physically expected. 
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The technique itself is a transfer-matrix calculation: we create states via a sequence 

action of our projection operators is controlled in  a small finite total-spin-singlet subspace, 
for which the projections map each original basis state onto only one other. The transfer 
matrices are a product of a finite number of these projections in our finite subspace, and are 
therefore easy to evaluate. The behaviours of the normalization and correlation functions 

parametrized by a sequence of numbers, which are chosen to minimize the energy of the 
state. Unfortunately, this final optimization problem is sophisticated, and unless one can 
deduce the likely form of the low-energy solutions, there is no easy way to perform the 
optimization. We are currently limited by our skill at dealing with this final optimization 
problem. The calculations are variational and systematic. We easily obtain comparable 
accuracy with exact-diagonalization calculations, and find the correlation lengths much 
easier to evaluate. 

[8], and although we get good agreement with energies, our correlation lengths do not 
unambiguously agree (when finite). We find a correlation length for the spin-one biquadratic- 
exchange Hamiltonian that is of longer range than is predicted [8], although this could 
easily be due to the fact that we are looking at different correlation functions-viz cyclic 
permutations rather than spin-spin correlations. 

Our results are in general agreement with those from other styles of calculation, and 
should be seen as an independent approach. Currently, we have only investigated a single 
type of variational state. There is much room for improvement in the classes of wavefunction 

of translationally invariant nearest-neighbour projections from a reference dimer state. The ~ 

~ 

~ ~ are then controlled by the eigenvalues of these transfei matrices. The states we choose are 

We have provided some numerical estimates of quantities found using exact analysis ~ 

chosen for investigation. ~ 
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